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ABSTRACT

Ab initio methods have been used to investigate the proton affinity and the geometry changes

upon protonation for the molecules (CH3)20, (CH2F)20, (CHF2)20, and (CF3)20. Geometry optimizations

were performed at the MP2/3-21G level, and the resulting geometries were used for single-point energy

MP2/6-31G** calculations. The proton affinity calculated for (CH3)20 was 7 Kjoule/mole from the experi-
mental value, within the desired variance of +/- 8Kjoule/mole for G2 theory, suggesting that the methodology

used in this study is adequate for energy difference considerations. For (CF3)20, the calculated proton

affinity of 602 Kjoule/mole suggests that perfluorinated ether molecules do not act as Lewis bases under

normal circumstances; e.g. degradation of commercial lubricants in tribological applications.

INTRODUCTION

Perfluoroalkyl ethers exhibit high physical and chemical stability and have low vapor pressure.

These qualities make them an excellent choice for lubricants in computer disk drive platters and satellite

bearings. They are being intensively studied in order to develop a better understanding of the mechanisms of
their catalytic decomposition on metal and metal oxide surfaces [ 1-6]. One predominant theory suggests that

the reaction is initiated by weak Lewis acid-base interactions at the metal-ether interface [7]. Atoms on the

metal surface act as Lewis acid sites which interact with basic oxygen sites on the ethers. Kasai et al. studied

the breakdown of a series of commercial perfluoroalkyl ethers on AI203 [8] and AIC13 [9] at elevated tem-
peratures. Based on the reactants, the identity and distribution of products, and the relative reactivities of the

lubricants, the authors proposed a credible mechanism: two adjacent oxygen atoms adsorb simultaneously

onto a metal acid site, inducing a charge on the attached carbon atoms which, in turn, causes a fluorine atom

to migrate and a bond to cleave. The cleaved molecule then continues to fragment.
Other mechanisms for the catalytic breakdown have been suggested [10]. While the reactivity of

non-fluorinated ethers is governed by their acid-base chemistry, the substitution of one or more of the ether

hydrogens by fluorine is expected to decrease the basicity of the oxygen atom. Also, the reaction of one

oxygen in a polyether is expected to reduce the basicity of the other oxygen(s). Other basic sites on the
fluoroether chain, e.g. the fluorine atoms, may participate in a reaction with surface acid sites, and the

reaction could be dissociative. For these reasons, it is of interest to study the basicities of polyalkyl ethers

with varying levels of fluorine substitution.
A convenient indicator of basicity is the proton affinity [11], which is defined as the negative

enthalpy of gas-phase protonation; for example:

(CH3)20+ H+ --) (CH3)2 OH+ (1)



While proton affinity (PA) is a measure of the ether reactivity to a single proton only, the values show

correlation to other scales of basicity such as ionization energies. Gaseous basicities (which are indicative of

the AG of protonation) and proton affinities (indicative of the AH of protonation) differ because of the

entropy contribution, but their relative values are similar for a series of molecules. Proton affinities can be

measured experimentally using high pressure mass spectrometry or ion-cyclotron resonance spectrometry.

Although the results from these methods are well accepted, the site of protonation can be unclear in compli-

cated molecules, and the existence of decomposition pathways can interfere with the results. These problems

are especially serious with experimental study of fluoroether protonation, because of their tendency to split

off hydrogen fluoride. Little experimental work has been conducted on the measurement of the basicities or

proton affinities of partially- or fully-fluorinated ethers.

Proton affinity values can be calculated using a variety of theoretical molecular orbital techniques.
Ab-initio methods yield very accurate results for molecules composed of first-row elements [12], and an

extensive literature exists covering proton affinity determination using these methods. This work deals with

the determination of proton affinities of (CF3)20, (CH2F)20, (CHF2)20, and (CH3)20 by ab-initio methods
including electron correlation using Moeller-Plesset perturbation theory. The purpose is to obtain accurate

proton affinities for these difficult-to-measure molecules, and to illuminate the discussion regarding break-

down mechanisms for polyperfluoroalkylether lubricants.

Previous ab-initio calculations of proton affinities for fluoroethers have been performed by DelHalle

et al. [13,14], who published Hartree-Fock (SCF) results for a series of unprotonated and protonated ethers

and their perfluorinated analogues, using the 3-21G and 6-31 G* basis sets. The authors found that

perfluorination of hydrocarbon ethers resulted in a proton affinity decrease of over 300 kJ/mole. These

calculations were performed, however, without considering electron correlation. Earlier, Pacansky et al. [ 15]

studied the structures and vibrational spectra for a series of perfluoroethers with Hartree-Fock calculations

using a 3-21G basis set. These authors found accurate results for geometries and excellent agreement with

measured vibrational frequencies "even at the 3-21G level" [ 15]. This work did not consider electron
correlation effects. More recently, Schwartz et al. [16,17] and Smith, Jaffe, and Yoon [18] used ab-initio

methods to study the conformational characteristics of simple fluoroethers, and related their results to the

structural characteristics of polymeric perfluoroethers.

In an attempt to delineate the effect of stepwise fluorine substitution at the ether, we herein present a

survey of calculated proton affinities of four symmetrically substituted dimethyi ethers containing varying
amounts of fluorine, using second-order Moeller-Plesset (MP2) perturbation theory and a 6-31G** basis set,

applied to geometries determined with a 3-21G basis set (MP2/6-31G**//MP2/3-21G). This paper expands

on earlier work by using bigger basis sets and including the effects of electron correlation.

COMPUTATIONAL DETAILS

Structural parameters and single-point energy values were determined with the use of the Gaussian

92 computer package [19]. The calculations were performed on a Cray C-90 or a Cray Y-MP8

supercomputer. The geometry optimizations were carded out using a 3-21G basis set at the MP2 level of

theory. The resulting optimized structures were then used to determine MP2 single-point energies with a

6-31G** basis set [201. A staggered C2 symmetry was chosen as the initial geometry; a rotational potential
energy surface to scan for metastable geometries was not performed in this study, but will be reported later

[21]. The C2 symmetry implies that, for the partially-fluorinated ethers, the unique atoms in each methyl
group were initially placed on opposite sides of the C-O-C plane. This was assumed to be the lowest-energy

conformation. (More recent results confirm that these are the lowest-energy conformations for both ethers

[21].) Frequency calculations were performed on the optimized structures, and the absence of any imaginary

values confirmed that the optimized structures were true energy minima. These computations also yielded

thermal energy values. Protonation was assumed to occur at the oxygen atom in all cases [22]. Proton
affinities were then calculated as follows:

PA : -AH298 : -(AE 0 + AEther m + A(PV)) (2)



whereAE0 is the difference in the total electronic energies at 0 K, and AEther m includes contributions from
the zero-point and thermal vibrational energy (scaled by a factor of 0.95), rotational energy, and thermal

translational energy differences. A(PV) is the standard conversion from internal energy to enthalpy and in

this case equals -RT (= -2.47 kJ/mole). Higher level corrections were ignored, as they were predicted to be of

negligible value and expected to mostly cancel in difference calculations.

RESULTS AND DISCUSSION

Structures The structural parameters for optimized (CH3)20, (CFH2)20, (CF2H)20, and (CF3)20

along with their protonated counterparts are listed in Tables 1 to 4, respectively. Diagrams illustrating the

optimized geometries are shown in Figs. 1-8. For this study, unprotonated ether starting geometries were

assumed to contain conformationally equivalent methyl groups, which imposed a C2 symmetry on the

molecular geometry. The initial geometries of the protonated ethers had C 1 geometries and no structural

parameters were constrained. It was felt that the rotational conformational isomerism of the methyl groups

would have negligible effect on the proton affinity. Determination of the potential energy surface with

respect to methyl rotations in both the unprotonated and protonated ethers is currently underway [21].

The initial optimization of (CH3)20 yielded a structure in which the methyl groups were slightly
rotated (<5 °) out of the C-O-C plane. This was unexpected, since it was thought that a C2v symmetry would

have the lowest energy. Upon constraining the molecule to a C2v symmetry and re-optimizing the other
structural parameters, an electronic energy minimum was calculated that was indeed slightly lower (-8 Kj

mole -I ) than the initial optimized structure. We therefore use this constrained geometry as our reported

result, and conclude that dimethyl ether has a relatively flat potential energy surface near its minimum-energy

geometry.

For (CH3)20, H1 and H4 (see Fig. 1 for labeling) are in the C-O-C plane, and the molecule exhibits

a C2v symmetry. This is similar to the optimized structure of diethyl ether, (C2H5)20, which also optimized
to C2v symmetry under similar optimization conditions [ 23]. Upon substitution of F for all hydrogens, the

departure from C2v symmetry is pronounced, due to the larger van der Waals radius of the fluorine atom.
Table 4 shows that F1 and F4 (see Fig. 7) are 36.4* out of the C-O-C molecular plane. Curiously, the

substitution of only one or two of the hydrogen atoms with fluorine on both methyl groups did little to

change the rotation of the methyl groups out of the C-O-C plane.

Increasing the fluorine content of the ether methyl groups had little effect on the length of the
methyl C-H bonds; a slight decrease was observed (on the order of 0.02._). The C-O-C bond angle increased

slightly and then dramatically upon increased fluorination; this is doubtless due to van der Waals repulsion
between the fluorine atoms on either side of the oxygen atom. The C-O bond lengths also exhibited a

monotonic drop of about 0.02/_ per fluorination step. Otherwise, bond distances and bond angles were

standard for fluoro- or hydrocarbon compounds.

The protonated ethers optimized with no symmetry elements (except E) and, in several cases,

differently-reoriented methyl groups (see Figs.). There was an obvious fluorine effect on the length of the

O-H bond. The effect is small (the net change is 0.01 ,_), but it monotonically increases with increased

fluorine substitution. This should correlate well with proton affinity trends. More obviously, the angle that

the added proton makes with the C-O-C plane also changes with fluorine content. For (CH3)2OH+, the proton

is 40 ° out of the C-O-C plane. However, for (CF3)2OH +, it is almost exactly in the plane. There is no trend
in the C-O-C bond angles versus fluorination in the protonated ethers, since the effect of the added proton

probably overwhelms any other trend. Protonation of (CH3)20 and (CFH2)20 does not substantially change

the relative orientations of the methyl groups. However, there is a very marked rotation of both CF2H groups

upon protonation of (CF2H)20, with one group rotating about 30 ° and the other about 60*. The CF2H group
that rotates 60 ° has one of its fluorine atoms almost in the C-O-C plane and is only 2.33/_ away from the

added proton. It seems fair to conclude that there is some intramolecular hydrogen bonding occurring to

force this difluoromethyl group to rotate so much.

For (CF3)20, the rotations of the methyl groups are on the order of 70* from the unprotonated ether.
There is a significant change in methyl group orientation upon protonation, the largest change for any of the



ethers.However,unlike(CF2H)20,whereonly one methyl substituent rotates significantly, in
perfluorodimethyl ether both methyl groups rotate upon protonation. This rotation allows one fluorine atom

from each CF 3 group to approach the added proton to a distance of about 2.36/_; once again, this is probably

close enough to assume some hydrogen-bonding type of interaction. Closer approach is probably blocked by

van der Waals repulsion of the other, nearly-eclipsing fluorine pair on the underside of the C-O-C bond angle

(i.e. distal to the added proton).

Proton Affinities Experimental data is available only for (CH3)20, which has a PA of 804 kJ/mole
[11 ]. The 3-21G basis set results in a relatively poor calculated PA for this molecule. However, the MP2

single point energies using the 6-31G** basis set yield a proton affinity of 810.7 kJ/mole, a variance of-7 kJ/

mole or 0.8%. The absolute variance is within the desired +8 kJ/mole variance for G2 theory, [24] suggesting

that the methodology used in this study is adequate for energy difference considerations.

Additional polarization and diffuse functions were added to the proton for the optimizations of the

protonated ethers with the thought that such an augmentation would allow for a better description of the

interactions of the proton with the ether. After optimization, however, all frequency calculations yielded at

least one negative vibration. We therefore abandoned this course of investigation and, cognizant of the

potential impact on our results, determined the proton affinities in the absence of the hydrogen basis set

augmentation. To illustrate the importance of electron correlation, HF/6-31G** and MP2/6-31G** single-

point-energy-derived PAs were calculated. Table 5 shows the calculated proton affinities for the four ethers

studied here. In only one case, (CFH2)20, are the HF and MP2 values for the proton affinity similar. In the
other three cases, differences of 6-23 kJ/mole are found.

On the presumption that a similar error exists for the other ethers where no experimental data exist,

the calculated PA's in Table 5 show the expected trend: a decrease upon increased fluorination. Although

both columns of PA's show the same relative change, the 6-31G** calculations are expected to provide values

closer to experimental data, should they ever be determined. For the fully-fluorinated ether, the (MP2)

calculated proton affinity of 602.0 kJ/mole is comparable to the experimental PAs of the molecules COS, HI

or C3H 8 [Lias et al., 11]. These last three compounds do not act as Lewis bases under usual circumstances,
so it is expected that the fully fluorinated dimethyl ether would not either.

The geometry for (CF3)20 compares well with results of the two studies by Delhalle et al. [ 13,14].
They determined a ZPVE-corrected proton affinity of 556.5 and 560.7 kJ/mole for perfluorodimethyl ether

using the 3-21G and the 6-31G* basis sets, respectively. Our MP'2 results include some level of electron

correlation, which accounts for part of a difference of +40 kJ/mole in the calculated proton affinity. In

addition, comparison of our MP2/6-31G**//MP2/3-21G proton affinity results with experimental data for

dimethyl ether and two of the diethyl ethers [23] shows very good agreement, with an average difference of

_+5kJ/mole. This suggests that the MP2/6-31G**//MP2/3-21G methodology does a more than adequate job

of predicting the proton affinities of fluorinated ethers [20].

If these proton affinity predictions apply to larger fluoroether polymers, they collectively suggest a

very weak base behavior at the oxygen atoms. While this does not disprove the hypothesis that Lewis acid-

base mechanisms are the first step in polyperfluoroether lubricants, it suggests that such interactions may not

be energetically favorable. We are continuing to investigate the properties of these compounds to better
understand how fluoroethers interact with protons, metal ions, and metal oxide surfaces.
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Table 1

Optimized Structural Parameters for (CH3)20 and (CH3)2OH+

Based on MP2/3-21G Optimization

Bond

Bond Length,/_

(CH3)20 (CH3)2OH + Angle

CI-O 1.467 1.532

C2-O 1.467 1.532

C1-H1 1.100 1.087

C1-H2 1.100 1.088

C l-H3 1.091 1.090

C2-H4 1.100 1.087

C2-H5 1.091 1.090

C2-H6 1.100 1.088

O-H + 0.995

Angular Values, Degrees

(CH3)20 (CH3)2OH

C1-O-C2 110.4 118.2

HI -C1-H2 108.3 111.7

H2-C1-H3 109.4 113.0

H4-C2-H5 109.5 112.7

H5-C2-H6 109.5 113.0

O-CI-H1 111.8 104.7

O-C1-H2 ! 11.8 105.4

O-C1-H3 106.0 108.6

O-C2-H4 111.8 108.6

O-C2-H5 106.0 105.4

O-C2-H6 111.8 104.7

H1-C1-O-C2 -60.8 -179.9

H4-C2-O-C 1 -60.8 - 179.9

H+-O-C 1-H3 44.99

H+-O-C2-H5 -45.00



Table 2

Optimized Structural Parameters for (CFH2)20 and (CFH2)2OH +

Based on MP2/3-21G Optimization

Bond

Bond Length, ._

(CFH2)20 (CFH2)2OH + Angle

CI-O 1.441 1.544

C2-O 1.441 1.563

C l-F1 1.419 1.376

C 1-H 1 1.090 1.081

C l-H2 1.087 1.086

C2-F2 1.419 1.371

C2-H3 1.090 1.086

C2-H4 1.087 1.085

O-H + 1.000

Angular Values, Degrees

(CFH2)20 (CFH2)2OH+

C1-O-C2 112.0 114.9

F1-C1-H1 107.9 112.7

HI-C1-H2 112.6 115.7

F2-C2-H3 107.9 112.2

H3-C2-H4 112.6 116.2

O-C1-FI 110.5 106.3

O-CI-H1 110.4 103.1

O-CI-H2 105.6 104.3

O-C2-F2 110.5 103.0

O-C2-H3 110.3 106.5

O-C2-H4 105.5 103.9

F 1-C 1-O-C2 - 176.6 179.5

F2-C2-O-C 1 - 177.4 164.9

H+-O-C1-F3 40.38

H+-O-C2-F5 -55.77



Table 3

Optimized Structural Parameters for (CF2H)20 and (CF2H)2OH÷

Based on MP2/3-21G Optimization

Bond

Bond Length,/_

(CF2H)20 (CF2H)2OH+ Angle

C1-O 1.422 1.571

C2-O 1.422 1.544

C1-F1 1.395 1.339

C I-F2 1.367 1.348

C1-H1 1.084 1.078

C2-F3 1.395 1.355

C2-F4 1.367 1.344
C2-H2 1.084 1.081

O-H ÷ 1.001

Angular Values, Degrees

(CF2H)20 (CF2H)2OH+

C1-O-C2 113.5 123.0
F1-C1-F2 109.1 112.7

F2-C1-H1 111.2 114.5

F3-C2-F4 109.1 112.6

F4-C2-H2 111.2 114.2

O-CI-F1 108.9 105.5

O-C1-F2 106.7 101.8

O-C1-H1 112.2 105.6

O-C2-F3 108.9 101.6

O-C2-F4 106.7 106.0

O-C2-H2 112.2 106.9

F2-C1-O-C2 68.29 37.57

F4-C2-O-C1 63.38 120.9

H+-O-C1-H1 -121.4
H÷-O-C2-H2 -70.54



Table 4

Optimized Structural Parameters for (CF3)20 and (CF3)2OH÷

Based on MP2/3-21G Optimization

Bond

Bond Length,/k

(CF3)20 (CF3)2OH + Angle

C 1-O 1.404 1.551

C2-O 1.404 1.551

C l-F1 1.350 1.327

C l-F2 1.360 1.331

C l-F3 1.367 1.331

C2-F4 1.351 1.327

C2-F5 1.360 1.331

C2-F6 1.367 1.331

O-H + 1.004

Angular Values, Degrees

(CF3)20 (CF3)2OH +

C 1-O-C2 119.2 122.6

F1-CI-F2 109.3 113.3

F2-CI-F3 108.5 114.2

F4-C2-F5 109.3 113.4

F5-C2-F6 108.5 114.2

O-C1-F1 107.1 107.1

O-C1-F2 111.4 104.0

O-C 1-F3 110.8 103.6

O-C2-F4 107.1 107.0

O-C2-F5 111.4 103.6

O-C2-F6 110.8 104.0

F1-C 1-O-C2 36.7 - 156.3

F4-C2-O-C1 36.7 85.5

H+-O-C1-F3 25.8

H+-O-C2-F5 23.3

Table 5

Theoretical proton affinities for various dimethyl ethers.

Proton Affinity at 298K, M/mole

PA Reaction

(CH3)20 + H ÷ __> (CH3)2OH +

(CFH2)20 + H + --> (CFH2)2OH+

(CF2H)20 + H + __> (CF2H)2OH+

(CF3)20 + H + --> (CF3)2OH+

MP2/3-21G HF/6-31G** MP2/6-31G * *

//MP2/3-21G //MP2/3-21G

836.1 831.0 810.7

755.8 769.4 767.9

699.5 655.9 667.5

630.2 577.7 602.0

9



HI_H4

H3 v OH 2 H60 _'_ H5

Figure 1 ._Optimized structure of (CH3)20. Cf. Table 1.

H

H 4

H3-Q2 M©-N0
Figure 2.---Optimized structure of (CH3)2OH +.

Cf. Table I.

H2 H4

Figure 3.--Optimized structure of (CFH2)20.
Cf. Table II.
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H

H2 H4

Figure4._Optimizedstructureof(CFH2)2OH+.
Cf.TableIf.

F2 F4

F3
Figure5.--Optimizedstructureof(CF2H)20.

Cf.Table III.

F2 F4

Figure 6._Optimized structure of (CF2H)2OH +.

Cf. Table IlL
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F1 F4

Figure 7._Optimized structure of (CF3)20. Cf. Table IV.

H

F1 F4

Figure 8.---Optimized structure of (CF3)2OH +.
Cf. Table IV.
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